SPECpower Committee

Server Efficiency Rating Tool (SERT)[™]

Design Document 3rd public draft

Standard Performance Evaluation Corporation

Table of Contents

1	Intro	oduction	6
	1.1	Summary	6
	1.2	About SPEC	
	1.2.	1 SPEC Membership	6
	1.2.	2 SPEC's General Development Guidelines	7
	1.3	The EPA's ENERGY STAR for Computer Server Specification and SPEC	7
	1.4	SERT's Differences from Conventional Benchmarks	7
	1.5	Design Feedback Mechanism	8
	1.6	Logistics	8
	1.7	Trademark	8
2	Sco	pe and Goals	9
	2.1	Overview Summary	9
	2.2	Sockets and Nodes	9
	2.3	Scaling	9
	2.4	Server Options and Expansion capabilities	10
	2.5	IO Component	10
	2.5.	1 Storage IO	10
	2.5.	2 Network IO	10
	2.6	Redundancy	11
	2.7	Run Time	11
	2.8	Platforms	
	2.8.	1 Tested as Shipped	11
	2.9	Implementation Languages	
	2.10	Load Levels	11
	2.11	Worklets	12
	2.12	Workload	
	2.13	Tentative Test Schedule	13
	2.14	Schedule tradeoffs	13
3	SER	T Architecture	14
	3.1	System Overview	14
	3.2	Execution of SERT	15
4	Wor	klet Execution Phases	16
5	Wor	klet Design Guidelines	19
	5.1	Active Idle Worklet	19
	5.2	CPU Worklet	19
	5.3	Memory Worklet	19
	5.4	Network IO Worklet	20
	5.5	Storage IO Worklet	20
	5.6	System Worklet	20
6	Pow	er and Temperature Measurements	21
	6.1	Environmental Conditions	21
	6.2	Temperature Sensor Specifications	21
	6.3	Power Analyzer Requirements	21
	6.4	SPEC PTDaemon	22

	6.5	Sup	ported and Compliant Devices	22
	6.6	Pow	ver Analyzer Setup	22
	6.7	DC	Line-Voltage	22
7	Metr	ric/S	core, Reporting, Logging	23
	7.1	Met	ric/Score	23
	7.2	Rep	orting and Output Files	23
	7.2.	1	Report 1: "Summary Report"	23
	7.2.	2	Report 2: "Power and Performance Data Sheet"	24
	7.3	Vali	dation / Verification	24
	7.4	Log	ging	25
8	Futu	ire E	nhancements / Stretch goals	26
	8.1	Gra	phical User Interface (GUI)	26
	8.2	Test	t Software	26
9	SER	T an	d EPA ENERGY STAR for Server Version 2.0	27
	9.1	Mea	asurement	27
	9.2	SEF	RT Binaries and Recompilation	27
	9.3	Mar	nual Intervention	27
	9.4	Fair	Use of SERT information	27
	9.4.	1	Fair Use Rules	27
	9.5	Acc	redited, Independent laboratory	27
	9.6	Sup	ply Voltage tolerance	28
1(0 Wor	klet	Candidates	29
	10.1	CPL	J Worklet: Compress	30
	10.1	1.1	General Description	30
	10.1	1.2	Sequence Execution Methods	30
	10.1	1.3	Metric	30
	10.1	1.4	Required Initialization	30
	10.1	.5	Configuration Parameters	30
	10.1	l.6	Transaction Code	30
	10.2	CPL	J Worklet: CryptoAES	31
	10.2	2.1	General Description	31
	10.2	2.2	Sequence Execution Methods	31
	10.2	2.3	Metric	31
	10.2	2.4	Required Initialization	31
	10.2	2.5	Configuration Parameters	31
	10.2	2.6	Transaction Code	31
	10.3	CPL	J Worklet: FFT	32
	10.3	3.1	General Description	32
	10.3	3.2	Sequence Execution Methods	32
	10.3	3.3	Metric	32
	10.3	3.4	Required Initialization	32
	10.3	3.5	Configuration Parameters	32
	10.3	3.6	Transaction Code	32
	10.4	CPL	J Workload: LU	33
	10.4	1.1	General Description	33
	10.4	1.2	Sequence Execution Methods	33

10.4.3	Metric	. 33
10.4.4	Required Initialization	. 33
10.4.5	Configuration Parameters	. 33
10.4.6	Transaction Code	. 33
10.5 CPl	J Workload: SOR	. 34
10.5.1	General Description	. 34
10.5.2	Sequence Execution Methods	. 34
10.5.3	Metric	. 34
10.5.4	Required Initialization	. 34
10.5.5	Configuration Parameters	. 34
10.5.6	Transaction Code	. 34
10.6 CPI	J Workload: XmlValidate	. 35
10.6.1	General Description	. 35
10.6.2	Sequence Execution Methods	. 35
10.6.3	Metric	. 35
10.6.4	Required Initialization	. 35
10.6.5	Configuration Parameters	. 35
10.6.6	Transaction Code	. 35
10.7 Mer	nory Worklet: Flood	
10.7.1	General Description	. 36
10.7.2	Sequence Execution Methods	
10.7.3	Metric	
10.7.4	Required Initialization	
10.7.5	Configuration Parameters	
10.7.6	Transaction Code	
10.8 Mer	nory Workload: XmlValidate	
10.8.1	General Description	
10.8.2	Sequence Execution Methods	
10.8.3	Metric	
10.8.4	Required Initialization	
10.8.5	Configuration Parameters	
10.8.6	Transaction Code	
10.9 Stor	rage IO Workload	
10.9.1	General Description	
10.9.2	Sequence Execution Methods	
10.9.3	Metric	
10.9.4	Required Initialization	
10.9.5	Configuration Parameters	
10.9.6	Transaction – Code 1 - RandomRead	
10.9.7	Transaction – Code 1 - RandomWrite	
10.9.8	Transaction – Code 2 – SequentialRead	
10.9.9	Transaction – Code 2 – SequentialWrite	
	tem Worklet: CSSJ	
•	General Description	
	Sequence Execution Methods	
	Metric	

10.10.4	Required Initialization	42
10.10.5	Configuration Parameters	42
10.10.6	New Order Transaction	42
10.10.7	Payment Transaction	43
10.10.8	Order Status Transaction	44
10.10.9	Delivery Transaction	44
10.10.10	Stock Level Transaction	44
10.10.11	Customer Report Transaction	44

2 **1** Introduction

3 **1.1 Summary**

The EPA's ENERGY STAR development team is currently working on Version 2.0 of their Computer Server Specification¹. Version 2.0 aims to evolve the program by adding a means to measure the overall efficiency of the server while it is performing actual computing work via an Active Mode Efficiency Rating Tool

7 Efficiency Rating Tool.

8 The SPECpower committee is currently working on the design, implementation and delivery of the 9 Server Efficiency Rating Tool (SERT)TM, a next generation tool set that will measure and evaluate the 10 energy efficiency of computer servers. This public draft outlines the design of SERT for review by EPA 11 stakeholders and their associates.

- 12 Please visit <u>http://www.spec.org/sert/docs/SERT-Design_Doc.pdf</u> for the latest updates.
- 13

14 **1.2 About SPEC**

The Standard Performance Evaluation Corporation (SPEC) was formed by the industry in 1988 to establish industry standards for measuring compute performance. SPEC has since become the largest and most influential benchmark consortium world-wide. Its mission is to ensure that the marketplace has a fair and useful set of metrics to analyze the newest generation of IT equipment.

19 The SPEC community has developed more than 30 industry-standard benchmarks for system 20 performance evaluation in a variety of application areas and provided thousands of benchmark 21 licenses to companies, resource centers, and educational institutions globally. Organizations using 22 these benchmarks have published more than 20,000 peer-reviewed performance reports on SPEC's 23 website (http://www.spec.org/results.html).

SPEC has a long history of designing, developing, and releasing industry-standard computer system performance benchmarks in a range of industry segments, plus peer-reviewing the results of benchmark runs. Performance benchmarking and the necessary work to develop and release new benchmarks can lead to disagreements among participants. Therefore, SPEC has developed an operating philosophy and range of normative behaviors that encourage cooperation and fairness amongst diverse and competitive organizations.

30 The increasing demand for energy-efficient IT Equipment has resulted in the need for power and 31 performance benchmarks. In response, the SPEC community established SPECpower, an initiative to augment existing industry standard benchmarks with a power/energy measurement. Leading 32 33 engineers and scientists in the fields of benchmark development and energy efficiency made a 34 commitment to tackle this task. The development of the first industry-standard benchmark that 35 measures the power and performance characteristics of server-class compute equipment started on 36 January 26th 2006. In December of 2007, SPECpower_ssj2008 was released, which exercises the 37 CPUs, caches, memory hierarchy and the scalability of shared memory processors on multiple loadlevels. The benchmark runs on a wide variety of operating systems and hardware architectures. In 38 version 1.10, which was released on April 15th 2009, SPEC augmented SPECpower_ssj2008 with 39 40 multi-node support (e.g., blade-support).

41

42 **1.2.1 SPEC Membership**

43 SPEC membership is open to any interested company or entity. OSG members and associates are 44 entitled to licensed copies of all released OSG benchmarks and unlimited publication of results on 45 SPEC's public website. An initiation fee and annual fees are due for members. Nonprofit 46 organizations and educational institutions have a reduced annual fee structure. Further details on 47 membership information can be found on http://www.spec.org/osg/joining.html or requested at 48 info@spec.org. Also а current list of SPEC members can be found here: 49 http://www.spec.org/spec/membership.html.

¹ US Environmental Protection Agency – Energy Star Program Requirements for Computer Servers. http://www.energystar.gov/index.cfm?c=revisions.computer_servers

51 **1.2.2 SPEC's General Development Guidelines**

52 SPEC's philosophy and standards of participation are the basis for the development of SERT. The tool

is being developed cooperatively by a committee representing diverse and competitive companies.
The following guides the committee in the development of a tool that will be useful and widely adopted
by the industry:

- Decisions are reached by consensus. Motions require a qualified majority to carry.
- Decisions are based on reality. Experimental results carry more weight than opinions. Data and demonstration overrule assertion.
 - Fair benchmarks allow competition among all industry participants in a transparent market.
- Tools and benchmarks should be architecture-neutral and portable.
- All who are willing to contribute may participate. Wide availability of results on the range of available solutions allows the end user to determine the appropriate IT equipment.
- 63 Similar guidelines have resulted in the success and wide use of SPEC benchmarks in the performance 64 and power/performance industry and are essential to the success of SERT.
- 65

56

59

1.3 The EPA's ENERGY STAR for Computer Server Specification and SPEC

67 SPEC applauds the EPA for its goal to drive toward greater energy efficiency in IT Equipment, and 68 SPEC considers the EPA ENERGY STAR Program an industry partner in this effort. The 69 development of an Active Mode Efficiency Rating Tool is an essential component in the ongoing effort 70 to reduce worldwide energy consumption and paves the way for a successful ENERGY STAR for 71 Computer Servers program that has the potential to harmonize energy efficiency programs worldwide.

SPEC welcomes this opportunity to work with the EPA on SERT in support of the ENERGY STAR
 Specification for Computer Server and is proudly looking forward to continuing our long-standing
 association with the EPA ENERGY STAR development team.

75

85

86

76 **1.4 SERT's Differences from Conventional Benchmarks**

Performance benchmarks and energy efficiency benchmarks tend to focus on capabilities of computer
 servers in specific business models or application areas. SERT is focused on providing a first order of
 approximation² of energy efficiency across a broad range of application environments.

- The absolute score is less relevant for the end user, because it will not reflect specific application capabilities.
- A rating tool that provides a pass-fail or a [Level 1/Level 2/Level 3] pass-fail rating is a better fit for EPA's ENERGY STAR Environment for Computer Servers than a typical benchmark result with multiple digits of precision in the metric.
 - Marketing of the absolute scores will be disallowed, in order to encourage more participation in the program

87 Benchmarks tend to focus on optimal conditions, including tuning options to customize the 88 configuration and software to the application of the benchmark business model. The need to achieve 89 competitive benchmark results often causes significant investment in the benchmark process. SERT is 90 designed to be more economical and easier to use, requiring minimal equipment and skills through:

- Highly automated processes and leveraging existing SPEC methods
- 92 Focus on as-shipped default settings for the server
- Free from super-tuning

Where a benchmark represents a fixed reference point, ENERGY STAR programs are designed to
 foster continuous improvement, with thresholds for success rising as the industry progresses. SERT
 will be designed to match this paradigm, including:

- Quick adoption of new computing technologies
- Rapid turn-around for SERT version updates

² Andrew Fanara, Evan Haines, Arthur Howard

 $http://www.energystar.gov/ia/partners/prod_development/downloads/State_of_Energy_and_Performance_Benchmarking_for_Enterprise_Servers_Final.pdf$

99 **1.5 Design Feedback Mechanism**

100 The SERT development team will evaluate input from a broad spectrum of industry experts during the

- entire development process by utilizing its partnership with the EPA ENERGY STAR Program. The
 team will collaborate on workload, metric and all other requirements of the EPA's Version 2.0
 Framework.
- Please provide your detailed feedback to the EPA via servers@energystar.gov. The EPA will collect,
 sort, anonymize, and prioritize your feedback and pass it on to the SPEC development team.
- 106

107 **1.6 Logistics**

- 108 The licensee and price structure as well as the support and maintenance models that will be used for 109 SERT is work in progress.
- 110

111 **1.7 Trademark**

- 112 Product and service names mentioned herein may be the trademarks of their respective owners.
- 113
- 114

115 2 Scope and Goals

The current scope of Version 2.0 ENERGY STAR for Computer Servers includes servers with 1-4 processor sockets with a stated goal to expand to include blade technologies of similar scope. A design goal of SERT is to accommodate these and larger technologies.

Among the issues involved with support of larger systems are the overall capacity of the system to complete work, and the ability to design a workload that scales with the inclusion of additional processors, memory, network interface cards, disk drives, etc. Different workload characteristics are required to demonstrate effectiveness for each of these components. Providing a workload that fairly represents their presence while not unfairly representing their absence is a challenge. These issues are more prevalent with larger systems that have more expansion capabilities than smaller servers.

For these areas where it is concluded that the tool does not adequately represent the value of a component compared to its power requirements, the tool will be designed to accommodate the inclusion of "configuration power/performance modifiers". A design goal is to automatically include this additional information in the computation of the ENERGY STAR qualification results, including detailed documentation that this was done.

130

131 **2.1 Overview Summary**

132 The following table summarizes some of the design goals that SERT will and will not provide.

IS	IS NOT
Rating Tool for overall energy efficiency	A Benchmark nor a Capacity Planning Tool
Measuring tool for power, performance and inlet-temperature	Measuring tool for Airflow, Air pressure, outlet-temperature
General compute-environment measure	Specific application benchmark measure
Support of AC- powered servers	Support of DC-powered servers
Used in single OS instance per server environments	Intended to stress virtualization hypervisor technology ³
ENERGY STAR Rating Tool	Marketing Tool
Planned to be architecture and OS neutral	Planned to be implemented on architecture and/or OS environments where insufficient resource has been volunteered to accomplish development, testing, and support.

133

134 **2.2 Sockets and Nodes**

SERT 1.0.0.0 is designed to be scalable and will be tested up to a maximum of 8 sockets and a maximum of 64 nodes (limited to a set of homogenous servers or blade servers). The server under test (SUT) may be a single stand-alone server or a multi-node set of servers. A multi-node SUT will consist of server nodes that cannot run independent of shared infrastructure such as a backplane, power-supplies, fans or other elements. These shared infrastructure systems are commonly known as "blade servers" or "multi-node server". Only identical servers are allowed in a multi-node SUT configuration.

142

143 **2.3 Scaling**

144 Since the server efficiency rating of a given server is the primary objective of SERT, one of the main 145 design goals for SERT is to be able to scale the performance on the system in proportion to the 146 system configuration. As more components (processors, memory, and disk storage) are added to the 147 server, the workloads should utilize the additional resources so that the resultant performance is 148 higher when compared to the performance on the same server with a lesser configuration. Similarly, 149 for a given server, when the components are upgraded with faster counterparts, the performance 150 should scale accordingly. This is a very important aspect of the tool since adding and upgrading 151 components typically increases the total power consumed by the server which will affect the overall 152 efficiency result of the server. Creating a tool that scales performance based on the number/speed of 153 CPUs is most readily achievable - for the other components, the complexity of implementing such a 154 tool increases substantially.

³ Virtualization can be an important tool for saving energy. In a first-order approximation tool, such as SERT, the impacts of virtualized environments can be determined by examining the results at higher load levels.

While SERT will be designed to scale performance with additional hardware resources of the SUT, if there are performance bottlenecks in system components unrelated to the added hardware the SUT itself may not be able to sustain higher performance. In such cases the addition of components to the SUT will normally result in higher power consumption without a commensurate increase in performance. It is also possible that the workload mix that is defined for smaller systems will not scale well when examining larger systems.

161

162 **2.4 Server Options and Expansion capabilities**

163 A server may have many optional features that are designed to increase the breadth of applications. 164 These features not only absorb additional power, but also require more capacity in the power supplies 165 and cooling system. Some SERT workload components will be designed to demonstrate the 166 enhanced capabilities that these features provide. However, while the tool needs to credit these 167 capabilities for the expanded workloads that they will accommodate, it cannot penalize efficient servers that are not designed with substantial expansion options. A balance must be struck between 168 169 providing enhanced ratings for enhanced configurations and avoiding easy qualification of servers by 170 simply adding features that may not be needed in all situations.

171 SERT's goal is to avoid unnecessarily penalizing servers that are designed for low expandability, while 172 crediting servers with greater expandability. For example a configuration with four I/O adapters in PCI 173 slots may execute the workload of the tool more effectively than a configuration with only one such 174 adapter. On the other hand it may only run the workload of the tool as effectively as a configuration 175 with two network adapters. Because the configuration with four adapters may run some real workloads 176 more effectively than configurations with only two adapters, the EPA may elect to allow for some form of "configuration modifier" to provide credit for the power infrastructure needed to support the 177 additional PCI slots. 178

The tool will be designed and tested to ensure that, should "configuration power-performance modifier" credits be included, the tool will accommodate them.

181

182 **2.5 IO Component**

183 Disk and Network IO components are strongly desired to provide a better-rounded picture of system 184 performance and power than a CPU-centric test. SPEC is in the early stages of evaluating IO 185 workloads for SERT, so this section provides many discussion points but not necessarily conclusions.

186 SPEC recognizes that some of the items in the next two sections may not be reasonable or practical to 187 test or measure in a meaningful way. In those cases we would suggest the use of "configuration 188 power-performance modifiers" to compensate for the extra power draw associated with extra 189 functionality. Other items under consideration include:

- Different types/quantities of IO for different server categories
- Self-calibrating performance measurements for the disk and network subsystem
- 192

190

193 2.5.1 Storage IO

- 194 Ideally the Storage IO component of SERT would give credit for:
- 195 Higher performance storage subsystems
- Larger capacity storage subsystems
- Reliability and availability features (RAID, battery backed cache, etc)
- 198 199

2.5.2 Network IO

- 200 Ideally the network IO component of SERT would give credit for:
- Higher performance Network Interfaces
 - Larger transfer speed Network Interfaces
- Reliability and availability features
- 204

2.6 Redundancy 205

206 Many servers have redundancy built in for power supplies and cooling fans. Some servers include 207 different levels of redundancy for memory, disk, and even processors. A design goal is to include 208 accommodation for redundant components, although no specific tests are planned for energy 209 measurement under fault tolerant conditions when one of a redundant set of components is disabled.

210

2.7 Run Time 211

212 The right balance between high repeatability of the results, high sub-system coverage and low 213 resource allocation is desirable. The run time will depend on the agreed set of worklets. The target 214 run time is around 3 hours.

215

2.8 Platforms 216

217 SERT 1.0.0.0 will be implemented for and is planned to be tested on the following platform/OS/JVM 218 combinations (64 bit only), pending resources. In some cases, SPEC recommend the use of more 219 than one JVM, where more than one JVM is generally available and selecting one may unfairly penalize a specific processor architecture or operating system. 220

221

HW Platform	x86 AMD	x86 AMD	x86 AMD	x86 Intel	x86 Intel	x86 Intel	Itanium Intel	POWER IBM	POWER IBM	POWER IBM	SPARC Oracle	SPARC Fujitsu
os	Windows Server 2008 R2	LINUX	Solaris	Windows Server 2008 R2	LINUX	Solaris	HP-UX 11i	AIX	IBM i	LINUX	Solaris	Solaris
JVM	IBM j9 Oracle HS	IBM j9 Oracle HS	Oracle	IBM j9 Oracle HS	IBM j9 Oracle HS	Oracle	HP HS	IBM – j9	IBM – j9	IBM –j9	Oracle	Oracle

222

223

Note: OS refers to versions (service pack and patch levels) that are current at the SERT release.

224

225 Platform/OS/JVM combinations currently not on the list have no resources allocated to them. If support 226 for additional architectures or OSs is desired, then active participation from requesting entities is 227 mandatory. The inclusion of a JVM is dependent on an agreement from the JVM provider for 228 unrestricted use of their JVM for SERT. Companies dedicating additional resources to the SPECpower 229 committee for development of SERT would relax the schedule constraints.

230

231 2.8.1 Tested as Shipped

232 To provide results that are representative of a customer environment, the goal is to test systems in an 233 "as-shipped" state. No super tuning would be allowed, but rather a limited list of valid parameter 234 changes for configuration and typical optimization be permitted. Other changes will cause the run to be 235 marked as noncompliant. SERT will launch the JVM within the tool, to restrict additional tuning.

236

237 The list of allowable parameters will be included in a future version of this document and in the 238 operational documentation of the tool. This list would be agreed with the EPA before SERT release, 239 and would be clearly documented as part of the SERT Run Rules.

240

2.9 Implementation Languages 241

242 The main body of code in written in Java in order to lower the burden of cross-platform support. 243 Regardless, the framework is designed to accommodate other language implementations as well.

244

2.10 Load Levels 245

246 Multiple load levels are a desired goal of SERT and the design will include support for multiple levels. 247 The active idle load level as well as a 100% workload level (not max power) are already good 248 candidates. Prototype testing will show which levels will be included and if any weighting will be 249 necessary.

250

251 **2.11 Worklets**

Developing the workload in the traditional SPEC way based on real world applications would result in complex test environments and high run times, especially for the IO intensive workloads, e.g. many client systems would be required for network IO and large disk sub systems for storage IO. The resulting costs for running such tests could be prohibitive for a rating tool. Therefore the SERT workload will be a collection of synthetic worklets for a variety of different load scenarios.

257

258 **2.12 Workload**

The existing SPEC benchmarks are mainly based on tailored versions of real world applications representing a typical workload for one application area or a synthetic workload derived from the analysis of existing server implementations. These benchmarks are suitable to evaluate different subareas of the overall server performance or efficiency if power measurements are included. They are not designed to give a representative assessment of the overall server performance or efficiency.

The design goal for the SERT suite however is to include all major aspects of server architecture, thus avoiding any preference for specific architectural features which might make a server look good under one workload and show disadvantages with another workload.

The SERT workload will instead take advantage of different server capabilities by using various load patterns, which are intended to stress all major components of a server uniformly.

269 If some components cannot be stressed adequately by the respective load pattern this can be 270 compensated by adjusting the threshold for these components, e.g. increasing the power allowance 271 for additional components which are not used by the load pattern.

272 It is highly unlikely that a single workload can be designed which achieves the goals outlined above, 273 especially given the time constraints of the schedule targeted for ENERGY STAR for Servers Version 274 2.0 by the EPA. Therefore the SERT workload will consist of several different worklets each stressing 275 specific capabilities of a server. This approach furthermore supports generating individual efficiency 276 scores for the server components besides the overall system score.

277 Figure 1 describes the general structure of the SERT test suite and its components.

278

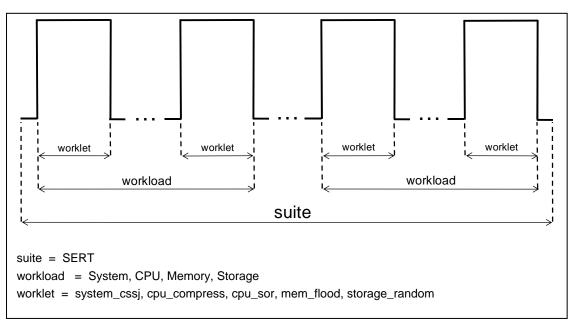


Figure 1: SERT Suite Components

282

283 2.13 Tentative Test Schedule

The alpha test phase is planned to start in March 2011 and the start of each phase requires successful completion of its predecessor. An estimated schedule can be created once we have decided on all design details.

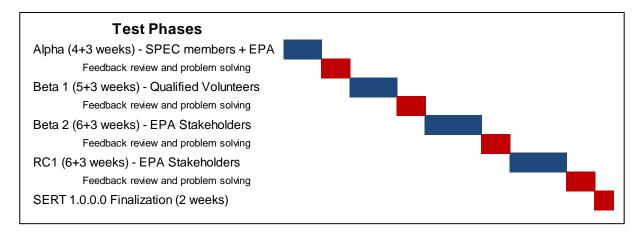


Figure 2: Tentative Test Schedule

287

288 **2.14 Schedule tradeoffs**

289 SPEC benchmarks are developed with the goal to generate results which are directly comparable for 290 multiple hardware and software architectures to the extent this is possible. The same basic goal 291 directs the design of SERT as specified in this document.

Even though SERT is designed with the goal of being architecture agnostic, code needs to be implemented for each of the workloads and the tool harness on all supported architectures. Furthermore this code must be tested intensively on all architectures in order to ensure a functionally equivalent set of binaries, which generate fair and comparable results. Simply using a portable programming language will not be sufficient to achieve these goals. Consequently significant complexity is added to the development process.

Given that SERT is designed as a first order approximation rating tool, comparability may be handled
 differently than with benchmarks (second order approximation tools) which are used for competitive
 marketing. Nevertheless it's essential to ensure a minimal level of comparability.

The resources available in the SPECpower committee are limited and a timely development of the tool 301 for a single architecture will be challenging. Support for additional architectures will remove resources 302 from the development of the basic test routines because they will be needed for porting the code. 303 304 Furthermore additive testing effort is required not only for the new architectures but for the original 305 implementation as well in order to ensure comparability. Therefore each extra architecture will add a currently undetermined amount of time to the schedule. The resource and schedule problems recur 306 307 with the support of multiple operating systems. SERT will be initially implemented on selected Operating Systems (OS) per HW architecture. 308

310 3 SERT Architecture

311 3.1 System Overview

312 SERT shares design philosophies and elements from SPECpower_ssj2008 in its overall architecture.

313 SERT is composed out of multiple software components.

314

For the most basic SERT hardware measurement setup one of each of the following is required:

- system under test (SUT) the actual system for which the measurements are being taken.
 The controller and SUT are connected to each other via an Ethernet connection.
- controller (e.g. server, PC, laptop) the system to which the power analyzer and temperature sensor are connected.
- power analyzer connected to the controller and used to measure the power consumption of the SUT.
- temperature sensor connected to the controller and used to measure the ambient temperature where the SUT is located.
- 324

326

327

329

330

331

332

333

334

325 The SERT is composed of several elements including:

- the test harness (Chauffeur) handles the logistical side of measuring and recording power data along with controlling the software installed on the SUT and controller system itself.
- the director instructs the SUT to execute the workload.
 - the workload (a set of worklets) exercises the SUT while the test harness collects the power and temperature data.
 - the SPEC PTDaemon connects to the power analyzer and temperature sensor and gathers their readings while the workload executes.
 - the reporter gathers the environmental, power and performance data after a run is complete and compiles it into an easy to read format.
 - Future versions of the kit will also include a GUI to ease setting up and executing the kit.
- 335 336

The basic system overview diagram shows these components in relationship to each other.

337 338

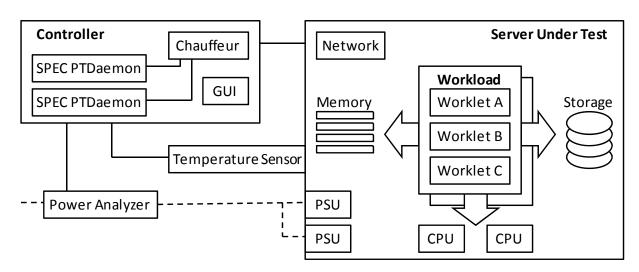
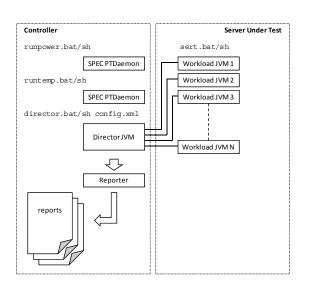



Figure 3: SERT Overview

- 340 341
- 342

343	3.2 Execution of SERT
344	These basic steps are needed in order to execute the SERT kit:
345	
346	 Setup the power analyzer and its associated SPEC PTDaemon script.
347	 Configure the power analyzer to correctly measure the amperage and voltage of the SUT.
348 349	 Edit the runpower.bat/sh script file to ensure that the proper power analyzer model is specified and the correct communication and network ports are used.
350	Ensure that the SPEC PTDaemon connects and communicates with the power analyzer.
351	2. Setup the temperature sensor and its associated SPEC PTDaemon script.
352 353	 Edit the runtemp.bat/sh script file to ensure the proper temperature sensor model is specified and the correct communication and network ports are used.
354	Ensure that the SPEC PTDaemon connects and communicates with the temperature sensor.
355	3. Edit the Director script file.
356	 Edit the director.bat/sh script file for the appropriate system configuration.
357	Ensure the proper Java path is specified.
358	 Ensure the LOCAL_DIRECTOR variable contains the appropriate information.
359	 Ensure the DIRECTOR_HOST variable contains the appropriate information.
360	4. Edit the SERT script file.
361	 Edit the sert.bat/sh script file for the appropriate system configuration.
362	Ensure the proper Java path is specified.
363	Ensure the proper number of JVM's is specified.
364	 Ensure the LOCAL_DIRECTOR variable contains the appropriate information.
365	 Ensure the DIRECTOR_HOST variable contains the appropriate information.
366	5. Run the SPEC PTDaemon, Director and SERT scripts.
367	• Execute the runpower.bat/sh, runtemp.bat/sh, director.bat/sh and sert.bat/sh scripts.
368	
369	After the kit completes the run, there should be a results.xml file located in the \results\chauffeur-xxxx

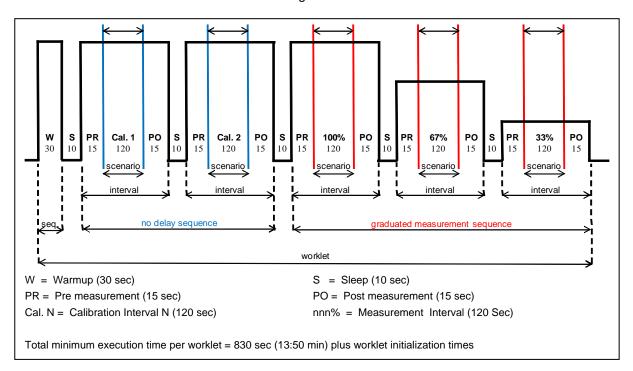
- directory (where xxxx is the run iteration number).
- 371

372

Figure 4: SERT Startup Procedure

373

4 Worklet Execution Phases


The SERT test suite consists of several workloads, which are designed to stress the various components of the system under test (SUT), e.g. CPU, Memory, Storage. Each workload includes one or more worklets, which execute specific code sequences to load one of these system components. The overall design structure of SERT is shown in Figure 1 above.

In the current design the worklets will run consecutively, each in its own phase. This allows generating
 independent scores at different load levels which can be combined to an overall metric.

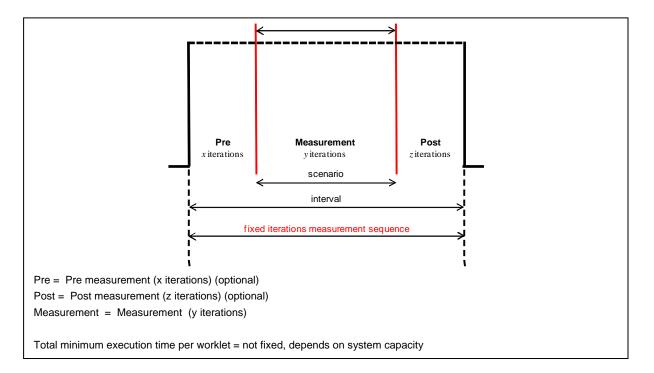
Selected worklets or additional worklets specifically designed for concurrent execution may be run simultaneously in an extra phase. Concurrent execution of worklets will introduce more realistic taskswitching, especially using IO load modules.

The worklet execution is split into phases called "sequences" in SERT terminology. Currently the SERT harness supports two types of worklet sequences, "Graduated Measurement" and "Fixed Iteration".

Those worklets, which can be throttled to lower load levels will use the graduated measurement execution scheme described in Figure 5 Worklets, which always run at maximum capacity have to use the fixed iteration execution scheme shown in Figure 6.

Figure 5: Graduated Measurement Execution

391


The following series of phases is typically performed for graduated measurement execution, interrupted by short sleep phases:

- 394 1. Warmup Sequence
- 395 2. No Delay Sequence for calibration
- 396 3. Graduated Measurement Sequence for determining the performance and power data

For the warmup and calibration phases the worklet code is executed unrestricted, whereas the SERTharness controls the load levels during the measurement sequence.

Each sequence can be divided into intervals of fixed time length as shown in Figure 5. The number of intervals, their duration and the desired load levels can be defined in SERT configuration files individually for each worklet.

402 Examples of worklets using graduated measurement execution are System_CSSJ, CPU_Compress,403 Storage_Random.

Figure 6: Fixed Iteration Execution

406

The fixed iteration execution scheme typically includes one sequence and one interval only. The duration of the interval is not predefined but determined by the capacity of the system, i.e. the time it takes to execute the fixed amount of work.

The number of intervals and scenarios can be defined in SERT configuration files for each worklet individually.

412 Currently only the Mem_Flood worklet uses this execution scheme

User	A User is a representation of a external agent that can initiate work (e.g. human being)				
	Each User may maintain identifying information				
	E.g. each User represents a Warehouse				
	Each User may maintain state information				
	Temporary information that persists from one transaction to another				
	There may be multiple types of Users for a single Workload				
Transaction	A transaction receives a User and transaction-specific Input as parameters				
	It produces some Result				
	Some transactions may be able to verify their results – this could be used for a small portion of transactions for auditing purposes				
Scenario	A worklet is a set of transactions that can be executed by a particular type of User				
	Workloads may contain multiple worklets				
	Each worklet could represent a sequence of user interactions				
	Think time may occur between transactions				
Interval	Each interval in a sequence includes pre-measurement				
	Within each interval, each User schedules the execution of worklets				
	When a scenario's scheduled time arrives, it iterates through its transactions. Each transaction is submitted to a JVM-wide thread pool. The next transaction in the Worklet will be submitted after the current transaction completes				

SPECpower Committee

Sequence	Each phase consists of a sequence of intervals					
	The intervals in a sequenc workload or configuration)	The intervals in a sequence have something in common (though the "something" can vary based on workload or configuration)				
	no delay sequence	fixed time intervals running scenarios unrestricted				
	graduated measurement sequence	fixed time intervals with controlled execution of scenarios				
	fixed iterations measurement sequence	a predefined number of iterations per scenario is executed, the score is calculated from the execution time, the pre and post interval phases are optional and may be missing for some worklets				
Worklet	A workload defines a set of Users and worklets					
	Execution of a Workload includes multiple phases:					
	Warmup					
	Calibration					
	One or more measurement phases					
	Each of these phases are really a sequence of measurement intervals					
	Multiple measurement phases could be used for varying transaction mix, users, etc					

414

415

416

418 **5 Worklet Design Guidelines**

In order to achieve consistent results from all worklets and a broad coverage of technologies thefollowing guidelines should be observed:

- Each worklet must be adjustable to different performance levels, e.g. some predefined levels
 between 100% (maximum load) and 0% (idle)
- Each worklet must calibrate to maximum performance level by itself, i.e. no definition of the 100% level by the test user
- Multiple programming languages may be used
- Precompiled binaries of the test programs should be used where possible.
- Each worklet should scale with the available hardware resources. More resources should result in a higher performance score, e.g. more processor/memory/disk capacity or additional processor/memory/disk modules yield a better result in the performance component of the efficiency rating.
 - Portable code that follows all SPEC rules for licensing, reuse and adaptation.
 - Either architecture and OS agnostic or with "if-def" capability to accommodate different architectures and/or OSs.
 - The work accomplished by each worklet is clearly identifiable as "important" but is not required to cover "all important" types of work.

In order to follow these guidelines the workloads will probably be based on batches of discrete work,
where each batch constitutes a transaction. The different load levels will be achieved by scheduling
the required number of transactions.

439

431

432

433

434

435

440 **5.1 Active Idle Worklet**

441 During active idle measurements, the SUT must be in a state in which it is capable of completing 442 workload transactions. The active idle worklet is treated in a manner consistent with all other worklets, 443 with the exception that no transactions occur during the active idle interval.

444

449

450

451

452

453 454

455

456 457

460

461 462

463

464 465

445 **5.2 CPU Worklet**

A combination of a wide variety of processor-intensive tasks, including string manipulation, task
 management, Java "commercial" processing, C "commercial" processing, numeric processing, and
 other tasks as identified and appropriate.

- Consistent processor characteristics per simulated "user" regardless of number of processors, cores, enabled threads, etc.
- Bottleneck at 100% is the processor, not the storage or memory
- Able to schedule processor tasks or blocks of tasks in such a way that the load can be scaled from 100% in graduated levels down to idle.
- The CPU worklets should measure a higher (better) performance score for:
 - higher #CPU, higher #core, higher #logical processors, higher frequency, larger overall cache, lower latency, faster interconnect between CPU sockets

458 **5.3 Memory Worklet**

459 Combination of random and sequential reads and writes, small and large memory accesses.

- Consistent memory access characteristics per simulated "user" regardless of size and number of memory DIMMs
- Bottleneck at 100% is the memory itself, not the processor or storage
- Able to schedule memory stress tasks or blocks of tasks in such a way that the load can be scaled from 100% in graduated levels down to idle.
- The memory worklets should measure a higher (better) performance score based on memory characteristics (e.g. higher bandwidth, lower latency, total memory size)
- 466 467 468

469

480

481

482

483

486

470 **5.4 Network IO Worklet**

471 Configuration power/performance modifier will be established in order to address Network IO.

- Avoid expensive and extensive external test system configurations
- 473 Measurements show that there are no significant differences in power utilization between
 474 100% and 0% network utilization for today's technology

475 **5.5 Storage IO Worklet**

476 Combination of random and sequential, reads and writes, small and large I/Os.

- 477 Consistent I/O characteristics per simulated "user" regardless of system size and number of disks or the installed memory
- Bottleneck at 100% is the storage subsystem, not the processor or memory
 - Able to schedule I/O tasks or blocks of tasks in such a way that the load can be scaled from 100% in graduated levels down to idle.
 - The storage worklets should measure a higher (better) performance score for a higher bandwidth and lower latency

The measurements of power and performance of either optional add-in storage controller cards or server blade enclosure storage are not in the scope of SERT.

487 **5.6 System Worklet**

488 A combination of a wide variety of processor and memory-intensive tasks

- Bottleneck at 100% is the processor and memory
- Able to schedule processor tasks or blocks of tasks in such a way that the load can be scaled from 100% in graduated levels down to idle.
 - The system worklets should measure a higher (better) performance score for:
 - higher #CPU, higher #core, higher #logical processors, higher frequency, larger overall cache, lower latency, faster interconnect between CPU sockets
 - higher bandwidth, lower latency, total memory size

496 497

492

493

498 **6 Power and Temperature Measurements**

SERT provides the ability to automatically gather measurement data from accepted power analyzers and temperature sensors and integrate that data into the SERT result. It will be required that the analyzers and sensors must be supported by the measurement framework, and be compliant with the specifications in this section.

503

504 6.1 Environmental Conditions

505 Power measurements need to be taken in an environment representative of the majority of usage 506 environments. The intent is to discourage extreme environments that may artificially impact power 507 consumption or performance of the server, before and during the SERT run.

- 508 The following environmental conditions need to be met:
- Ambient temperature lower limit: 20°C
- Ambient temperature upper limit: within documented operating specification of SUT
- Elevation: within documented operating specification of SUT
 - Humidity: within documented operating specification of SUT
 - Overtly directing air flow in the vicinity of the measured equipment in a way that would be inconsistent with normal data center practices is not allowed.
- 514 515

512

513

516 6.2 Temperature Sensor Specifications

517 Temperature must be measured no more than 50mm in front of (upwind of) the main airflow inlet of the 518 SUT. To ensure comparability and repeatability of temperature measurements, SPEC requires the 519 following attributes for the temperature measurement device used during the benchmark:

- Logging The sensor must have an interface that allows its measurements to be read by the benchmark harness. The reading rate supported by the sensor must be at least 4 samples per minute.
- Accuracy Measurements must be reported by the sensor with an overall accuracy of +/- 0.5 degrees Celsius or better for the ranges measured during the benchmark run.
- 525

526 **6.3 Power Analyzer Requirements**

527 To ensure comparability and repeatability of power measurements, the following attributes for the 528 power measurement device are required for SERT. Please note that a power analyzer may meet 529 these requirements when used in some power ranges but not in others, due to the dynamic nature of 530 power analyzer Accuracy and Crest Factor. The usage of power analyzer's auto-ranging function is 531 not permitted.

- Measurements the analyzer must report true RMS power (watts) and at least two of the following measurement units: voltage, amperes and power factor
- Accuracy Measurements must be reported by the analyzer with an overall uncertainty of 1% or
 better for the ranges measured during the benchmark run. Overall uncertainty means the sum of
 all specified analyzer uncertainties for the measurements made during the benchmark run.
- Calibration the analyzer must be able to be calibrated by a standard traceable to NIST (U.S.A.)
 (http://nist.gov) or a counterpart national metrology institute in other countries. The analyzer must
 have been calibrated within the past year.
- Crest Factor The analyzer must provide a current crest factor of a minimum value of 3. For 541 Analyzers which do not specify the crest factor, the analyzer must be capable of measuring an 542 amperage spike of at least 3 times the maximum amperage measured during any 1-second 543 sample of the benchmark run.
- Logging The analyzer must have an interface that allows its measurements to be read by the SPEC PTDaemon. The reading rate supported by the analyzer must be at least 1 set of measurements per second, where set is defined as watts and at least 2 of the following readings: volts, amps and power factor. The data averaging interval of the analyzer must be either 1 (preferred) or 2 times the reading interval. "Data averaging interval" is defined as the time period

- 549 over which all samples captured by the high-speed sampling electronics of the analyzer are 550 averaged to provide the measurement set.
- 551
- 552 Examples:
- 553 An analyzer with a vendor-specified accuracy of +/- 0.5% of reading +/- 4 digits, used in a test with a 554 maximum power value of 200W, would have "overall" accuracy of (((0.5%*200W)+0.4W)=1.4W/200W) 555 or 0.7% at 200W.
- 556 An analyzer with a wattage range 20-400W, with a vendor-specified accuracy of +/- 0.25% of range +/-557 4 digits, used in a test with a maximum power value of 200W, would have "overall" accuracy of 558 (((0.25%*400W)+0.4W)=1.4W/200W) or 0.7% at 200W.
- 559

560 6.4 SPEC PTDaemon

561 SPEC PTDaemon (also known as power/temperature daemon, PTD or ptd) is used by SERT to 562 offload the work of controlling a power analyzer or temperature sensor during measurement intervals 563 to a system other than the SUT. It hides the details of different power analyzer interface protocols and 564 behaviors from the SERT software, presenting a common TCP-IP-based interface that can be readily 565 integrated into different benchmark harnesses.

- 566 The SERT harness connects to PTDaemon by opening a TCP port and using the simple commands 567 detailed in the API section of this document. For larger configurations, multiple IP/port combinations 568 can be used to control multiple devices.
- 569 PTDaemon can connect to multiple analyzer and sensor types, via protocols and interfaces specific to 570 each device type. The device type is specified by a parameter passed locally on the command line on
- 571 initial invocation of the daemon.
- 572 The communication protocol between the SUT and PTDaemon does not change regardless of device 573 type. This allows SERT to be developed independently of the device types to be supported.
- 574

575 6.5 Supported and Compliant Devices

- 576 SERT will utilize SPEC's accepted measurement devices list and SPEC PTDaemon update process. 577 See Device List (<u>http://www.spec.org/power_ssj2008/docs/device-list.html</u>) for a list of currently 578 supported (by the SPEC PTDaemon) and compliant (in specifications) power analyzers and 579 temperature sensors.
- 580

581 6.6 Power Analyzer Setup

- 582 The power analyzer must be located between the AC Line Voltage Source and the SUT. No other 583 active components are allowed between the AC Line Voltage Source and the SUT.
- 584 Power analyzer configuration settings that are set by the SPEC PTDaemon must not be manually 585 overridden.
- 586

587 6.7 DC Line-Voltage

588 SPEC PTDaemon is neither supported nor tested with DC loads today and currently no resources are 589 devoted to including this support. We are in favor of including DC support if new resources from 590 companies whose focus is DC computing become available to the SPECpower committee to address 591 the development and support opportunity.

- Additional, comparing servers powered by AC against servers powered by DC is not fair, since the
 AC-DC conversion losses are not included in DC-powered server. Therefore we recommend creating
 a separate category for DC-powered servers.
- 595
- 596
- 597
- 598

599 **7 Metric/Score, Reporting, Logging**

600 **7.1 Metric/Score**

While SERT is not intended to be a benchmark, nevertheless as a rating tool it must produce a metric or score indicative of the efficiency of the server under test. That metric must combine both the performance of the SUT as well as its power consumption in a way that allows comparison among all systems subjected to it. The desired outcome of that comparison is a quantitative measure of the relative power-performance efficiencies of the systems. The system which produces the higher metric should have greater power-performance efficiency than the system which produces the lower metric.

607 Since different architectures perform differently on different workloads, SERT is composed of several 608 discrete worklets to ensure architecture neutrality. Each worklet will produce a measure representing 609 the performance achieved by the SUT, which then must be combined with the measures produced by 610 the other worklets to yield a metric indicative of the overall performance of the SUT on all worklets 611 used in the tool. SPEC recommends that the multiple performance measures produced in this manner

- be combined into a single metric as the geometric mean of the individual measures.
- The geometric mean of individual worklet performance may be used whether the individual worklets are run sequentially or simultaneously. Depending on the worklets chosen and the magnitudes of their individual measures, we intend indexing the measures to a set of reference scores before combining them into the single metric as the geometric mean. These techniques have the advantages of rendering the single metric unit-less, and of keeping the scale of the individual measures within similar ranges, so that a worklet with large magnitude individual measure does not overwhelm the result from a workload with a smaller measure.
- 620 Once determined, the overall performance must be combined with the measured power consumption
- 621 of the SUT in a way that demonstrates the power-performance efficiency of the system. This will be a 622 complex calculation automatically performed by SERT to take into account the power-performance
- 623 efficiency of the SUT at different utilization levels.
- The metric that is produced by SERT is separate from the ENERGY STAR rating. The EPA will determine criteria for ENERGY STAR acceptance of which the SERT scores may be only a part. It's anticipated that the top 25% of tested units will achieve ENERGY STAR qualification. A "gold-level" ENERGY STAR qualification may be available for units achieving in the top 5% of results. Additionally the EU has proposed a system of graduated achievement in power-performance efficiency with levels A through F, for which they will determine the overall criteria.
- 630 Server under test may be placed in different categories by the EPA. The EPA will decide how to apply 631 these categories and whether units in a particular category may be compared to units in another 632 category.
- 633

634 **7.2 Reporting and Output Files**

635 SERT will produce two reports and a set of log files. The reports will be created in XML format, in 636 order to reduce the effort for both EPA and the partner in displaying and or storing the desired 637 information. We will take steps in order to ensure authenticity (e.g. encryption) of the reports.

638

639 7.2.1 Report 1: "Summary Report"

This report will contain a placeholder for a "pass or fail" notice for the tested platform, to be provided by the EPA. A test run is marked non-compliant if the test completes with technical errors. In such a case, error messages and/or warnings will be automatically included in the report. The information in this report is public and could be used for marketing purpose.

- 644
- 645 Items included in this report are:
- EPA Partner name and EPA Partner ID
- EPA ENERGY STAR Category of the tested platform
- Test Date and Location (plus "Tested by")
- Tested Platform Manufacturer and Model Number
- Placeholder for "Pass/Fail"

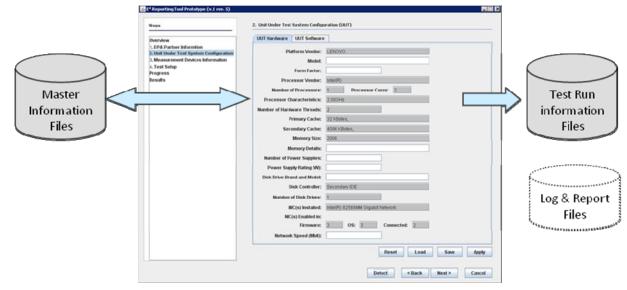
- 651 Warnings or Error Notices if applicable System Configuration information (Redundant components to be marked appropriately): 652 • 653 form factor 0 654 number and type of processors 0 655 available processor sockets 0 656 memory size, type, # memory DIMMs, # DIMM Slots, Max Memory Capacity 0 657 available expansion slots 0 number of and make-model of power supply, output rating, min/max 658 0 659 Input power 0 OS supported / OS used for test 660 0 661 number of and make-model of storage controller 0 662 number of and make-model of mass storage devices 0 number of and make-model of network interface cards (NICs) 663 0 664 Management Controller or Service Processor Installed? [Yes/No] 0 665 Other Hardware Features / Accessories 0 666 667 7.2.2 Report 2: "Power and Performance Data Sheet".
- 668 This report will contain all the information the EPA requires and that is deemed necessary by SPEC. 669 The Power and Performance Data Sheet will be public, but marketing use is prohibited by SERT Fair 670 Usage Rules. The information is intended to be delivered to the EPA in a form most expeditious for 671 EPA review.
- This report will contain all the data from the "Summary Report" with the following additional detail sections:
- Overall Result / Score
- All target load level results
- Hardware and Software Configuration
 - Power Measurement Summary
 - Environmental information
- 678 679

677

680 7.3 Validation / Verification

- 681 SERT software components will implement software checks wherever possible to increase information 682 accuracy, verify user input, monitor run-time data collection, and validate results with the intent of 683 improving accuracy and remedying user errors, preventing invalid reports to the EPA.
- 684 When conditions or results do not meet specific criteria, warnings will be displayed and error 685 messages will appear in the SERT reports.
- These features will make it easy for the EPA Partner to generate compliant results and preventsubmission of erroneous reports to the EPA.
- 688 Examples of compliance checking are:
- Verify input properties (parameters) and run-time duration of load levels.
- Temperature out of range will be reported.
 - Power and Temperature read errors must be under a chosen threshold.
- All the SERT software components will perform validation checks within the domain of their functions,
 e.g. warnings of connection problems, log measurement errors and out-of-range conditions, warning
 the user of missing or incomplete information and check the validity of some entered data.

695 Other new validation methods will be considered as the SERT software design and implementation 696 progresses.


697

698	7.4 Logging					
699	A set of log files will be produced for each test run.					
700	 The information in the log files is intended to be "non-public". 					
701 702	 These files will be identified by a run serial number such that multiple consecutive test runs produce multiple log file sets. 					
703 704	 Each log file will be a record of actions from the software during the various phases of the testing, including errors and warnings. 					
705	 The intent of the log files is for auditing and support purpose. 					
706 707 708	 Problems or failures can be more easily resolved with this low level detail record. If any issues arise with regard to the accuracy or veracity of the partner reports, these log files (potentially encrypted) should be adequate to resolve most issues. 					
709	Examples of log file content are:					
710	 Handshake validation messages among various components 					
711	 Error or warning messages 					
712	 State change messages/notifications. 					
713	 'Transaction' instantaneous/periodic summary information 					
714	 'Transaction' response times 					
715 716 717	The EPA may require that any or all of the above outputs be delivered prior to ENERGY STAR qualification. Regardless, the partner must commit to archiving all output from any results submitted to the EPA.					
718						
719						
720						

Future Enhancements / Stretch goals 8 722

8.1 Graphical User Interface (GUI) 723

724 One of the stretch goals is the incorporation of a graphical user interface (GUI) to facilitate 725 configuration and setup of test runs, allow real-time monitoring of test runs and to review the results. 726 The SERT GUI will lead the user through the steps of detecting or entering the hardware and software 727 configuration, setting up a trial run or a valid test, displaying results reports and other functions 728 common to the testing environment.

729 730

733

734

731 The SERT GUI will include several features to enable SERT testing with minimal training and enhance the accuracy of results: 732

- Easy Navigation with Tabbed Screens •
- How to Use (in-line usage guidance and help)
- 735 Configuration Discovery (Detect function) will automatically populate most fields about SUT and Controller hardware and software. 736

The GUI will display, allow entry of and store required information about the test environment For use in reports: e.g. Company Info, Platform Config, Run-Time parameters, etc.

Master and Test Run information files can be stored, enabling reuse, saving time with

- 737
- 738

740

742

743

744

- 739
 - multiple platforms.

0

0

- 741 Test Setup, Execution and Progress Display
 - Start measurements; Choose type of run (trial or final) 0
 - Display progress, warnings and errors. 0
 - Display results and enable printing and capture of reports
- 745 • Provisions for redundant components and power and performance modifier.

746 8.2 Test Software 747

748 A "stretch goal" of SERT is to enable a "Live CD" approach to tool installation, for some environments - such that the entire tool suite along with the underlying operating system could all be run from a 749 750 single bootable CD or DVD with no other operating system installed on the SUT. This should provide 751 increased ease of installation and improve the adoption rate of the tool.

752 Possible issues with this approach include the lack of specific hardware drivers for newer devices, the potential lack of vendor specific power management, licensing and availability issues for some 753 754 operating systems. Alternatives include allowing additional drivers to be installed during setup, or 755 providing separate test installers with binaries for use with a vendor's own as-shipped OS installation.

757 9 SERT and EPA ENERGY STAR for Server Version 2.0

In order to ensure that SERT is utilized in the intended matter, we recommend the inclusion of the following items in the ENERGY STAR for Server Specification.

760

761 9.1 Measurement

The provided SERT test kit must be used to run and produce measured SERT results. The SERT metric is a function of the SERT workload (see section 0). SERT results are not comparable to power and performance metrics from any other application.

765

766 9.2 SERT Binaries and Recompilation

Valid runs must use the provided binary files and these files must not be updated or modified in anyway.

769

770 9.3 Manual Intervention

No manual intervention or optimization for the SUT or its internal and external environment is allowed
 during the test measurement, after initial setup is completed.

773

774 **9.4 Fair Use of SERT information**

775 A clear goal of the ENERGY STAR program is to have the broadest possible participation among 776 vendors. Experience in the computer industry's performance benchmark community demonstrates that 777 when performance details become available for marketing purposes, only vendors with superior (at the 778 time of publication) products are incented to publish results. To encourage broader participation 779 across the industry, a set of strong rules must be in place that will restrict marketing use of any of the 780 detailed information generated by the tool. No data besides the actual ENERGY STAR qualification 781 should be utilized in EPA Partners' marketing collateral. These rules will be stipulated in both the 782 license for the tool and the EPA Partner agreement.

Note that, while these rules are not strictly a part of the tool "design", the existence of these rules are
necessary to allow the flexibility of the design and the delivery of detailed consumer information that is
desired.

786

787 **9.4.1 Fair Use Rules**

- The only information provided by the tool that can be used for marketing collateral is the ENERGY
 STAR qualification of a server configuration or server family
- The only information provided by the tool that can be used for public comparison is the ENERGY
 STAR qualification of a server configuration or server family All other publicly available information
 from the tool is made available to help to verify that the tests were run correctly and to allow
 consumers to better understand how well the configurations tested match their specific needs.
- If the tool is used for research to generate information outside of the ENERGY STAR program, the
 information may not be compared to the ENERGY STAR program results and competitive
 comparisons may not be made using the data generated.
- The EPA ENERGY STAR Qualification is governed by EPA rules.
- 798

799 **9.5 Accredited, Independent laboratory**

The requirement to use accredited, independent laboratories may place a large burden on EPA ENERGY STAR partners, especially smaller companies. We recommend the use of an independent laboratory as an option, but not implementing this as a requirement.

804 **9.6 Supply Voltage tolerance**

805 In order to use a voltage within a 1% difference, an extra voltage source is needed. This will 806 unnecessarily increase the cost for the partner, especially smaller companies. We recommend the 807 tolerance be set to \pm 5%.

808

809

811 **10 Worklet Candidates**

812

- The following table shows the current Worklet candidates and their anticipated use in different SERT test phases. Worklet candidates included in early releases may change in subsequent releases. Early
- 815 release test results may influence the inclusion of some worklets in future releases.

816

Workload	Worklet candidate	Alpha	Beta 1	Beta 2	RC1
CPU	CPU_Compress	Included	TBD	TBD	TBD
CPU	CPU_CryptoAES	Included	TBD	TBD	TBD
CPU	CPU_SOR	Included	TBD	TBD	TBD
CPU	CPU_FFT	Included	TBD	TBD	TBD
CPU	CPU_LU	Included	TBD	TBD	TBD
CPU	CPU_XMLvalidate	Included	TBD	TBD	TBD
Memory	Mem_Flood	Included	TBD	TBD	TBD
Memory	Mem_XMLvalidate1	Included	TBD	TBD	TBD
Memory	Mem_XMLvalidate2	Included	TBD	TBD	TBD
Storage	Storage_Random	-	TBD	TBD	TBD
Storage	Storage_Sequential	-	TBD	TBD	TBD
Storage	Storage_Mixed	Included	TBD	TBD	TBD
System	System_CSSJ	Included	TBD	TBD	TBD

819 10.1 CPU Worklet: Compress

820

821 **10.1.1 General Description**

The Compress workload implements a transaction that compresses and decompresses data using a modified Lempel-Ziv method (LZW). Essentially, it finds common substrings and replaces them with a variable size code. This is both deterministic and done on the fly. Thus, the decompression procedure needs no input table, but tracks the way the table was built. The algorithm is based on "A Technique for High Performance Data Compression", Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.

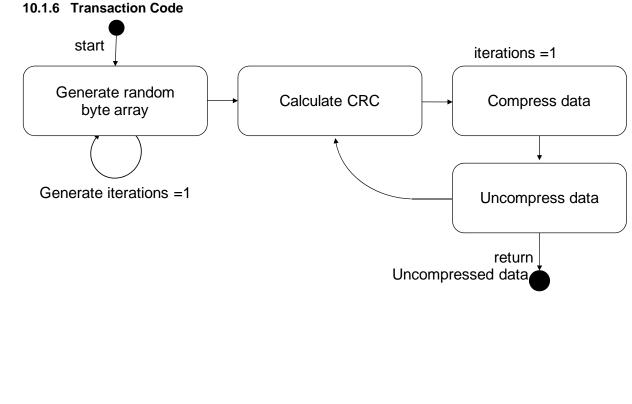
829 10.1.2 Sequence Execution Methods

830 Graduated Measurement Sequence

831 832 **10.1.3 Metric**

- 833 Transactions Per Second
- 834

828


835 10.1.4 Required Initialization

- A constant size byte array is generated on the fly before for each transaction execution. The contents
- 837 of the byte array are randomly generated.
- 838

839 **10.1.5 Configuration Parameters**

size	Size of the input byte array for each transaction execution.	
enable-idc Enables/disables memory scaling using input data cac		
	Must be set to false.	
iterations	Number of executions per transaction.	
debug-level	Value governs the volume of debug messages printed during	
	execution.	
input-generate-iterations	Number of random byte array assignment iterations.	

840 841

848 10.2 CPU Worklet: CryptoAES

849

850 **10.2.1 General Description**

The CryptoAES workload implements a transaction that encrypts and decrypts data using the AES (or DES) block cipher algorithms. Which algorithm is a configurable parameter, but the current candidate version uses AES with CBC and no PKCS5 padding. Encryption and decryption are done using the Java Cryptographic Extension (JCE) framework, and the Cipher class in particular.

856 **10.2.2 Sequence Execution Methods**

- 857 Graduated Measurement Sequence
- 858

855

859 10.2.3 Metric

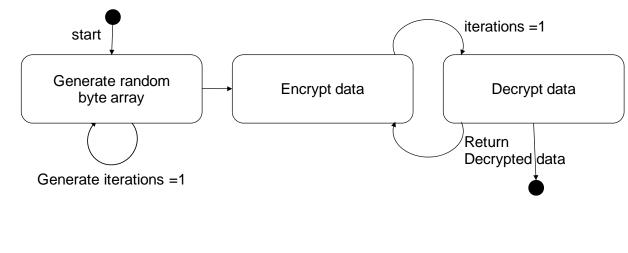
- 860 Transactions Per Second
- 861

862 10.2.4 Required Initialization

A constant size byte array is generated on the fly before for each transaction execution. The contents of the byte array are randomly generated.

865

866 **10.2.5 Configuration Parameters**


867

size	Size of the input byte array for each transaction execution.
key-generator	Key generator algorithm. (AES or DESede)
key-size	Key size. (128 for AES, 168 for DES)
algorithm	Encryption algorithm. (E.g., AES/CBC/NoPadding, AES/CBC/PKCS5Padding,
	DESede/CBC/NoPadding, DES/CBC/PKCS5Padding)
level	Number of times to perform the encryption.
enable-idc	Enables/disables memory scaling using input data caching (IDC). Must be set
	to false.
iterations	Number of executions per transaction.
debug-level	Value governs the volume of debug messages printed during execution.
input-generate-	Number of random byte array assignment iterations.
iterations	

868

869 10.2.6 Transaction Code

870

874 **10.3 CPU Worklet: FFT**

875

876 **10.3.1 General Description**

The Fast Fourier Transform (FFT) workload implements a transaction that performs a one-dimensional forward transform of complex numbers. Its floating point computations exercise complex arithmetic, shuffling, non-constant memory references and trigonometric functions. The first section performs the bit-reversal portion (no flops) and the second performs the actual Nlog(N) computational steps. (Adapted from the NIST-developed Scimark benchmark.)

882

883 10.3.2 Sequence Execution Methods

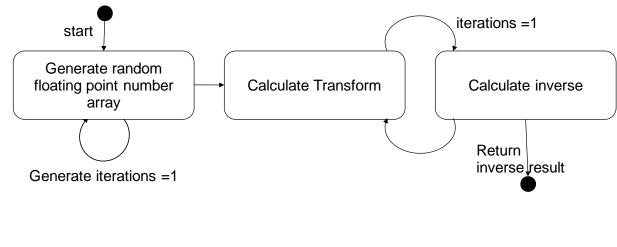
884 Graduated Measurement Sequence

885 886 **10.3.3 Metric**

- 887 Transactions Per Second
- 888

889 10.3.4 Required Initialization

890 A constant size floating point number array is generated on the fly before for each transaction 891 execution. The contents of the array are randomly generated.


892

893 **10.3.5 Configuration Parameters**

array-length	Size of the input floating point number array for each transaction execution.
enable-idc	Enables/disables memory scaling using input data caching (IDC). Must be
	set to false.
iterations	Number of executions per transaction.
debug-level	Value governs the volume of debug messages printed during execution.
input-generate-	Number of random array assignment iterations.
iterations	

894

895 **10.3.6 Transaction Code**

900 **10.4 CPU Workload: LU**

901

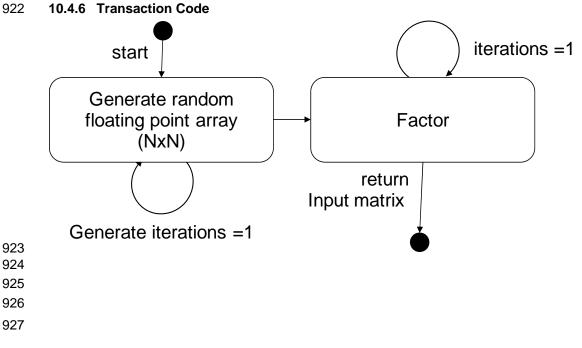
902 10.4.1 General Description

The LU workload implements a transaction that computes the LU factorization of a dense matrix using
 partial pivoting. It exercises linear algebra kernels (BLAS) and dense matrix operations. The algorithm
 is the right-looking version of LU with rank-1 updates. (Adapted from the NIST-developed Scimark
 benchmark.)

- 907908 10.4.2 Sequence Execution Methods
- 909 Graduated Measurement Sequence
- 910
- 911 10.4.3 Metric
- 912 Transactions Per Second
- 913

914 10.4.4 Required Initialization

915 A constant size matrix of floating point numbers is generated on the fly before for each transaction 916 execution. The contents of the matrix are randomly generated.


917

918 10.4.5 Configuration Parameters

919

matrix-dimen	Dimension of the input floating point matrix for each transaction execution. (NxN)
enable-idc	Enables/disables memory scaling using input data caching (IDC). Must be set to false.
iterations	Number of executions per transaction.
debug-level	Value governs the volume of debug messages printed during execution.
input-generate- iterations	Number of random matrix assignment iterations.

920

928 10.5 CPU Workload: SOR

929

930 **10.5.1 General Description**

The Jacobi Successive Over-relaxation (SOR) workload implements a transaction that exercises typical access patterns in finite difference applications, for example, solving Laplace's equation in 2D with Drichlet boundary conditions. The algorithm excercises basic "grid averaging" memory patterns, where each A(i,j) is assigned an average weighting of its four nearest neighbors. Some handoptimizing is done by aliasing the rows of G[][] to streamline the array accesses in the update

expression. (Adapted from the NIST-developed Scimark benchmark.)

937

938 10.5.2 Sequence Execution Methods

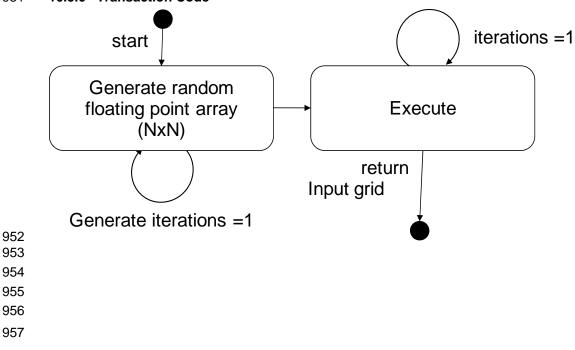
939 Graduated Measurement Sequence

940 941 **10.5.3 Metric**

942 Transactions Per Second

943

944 10.5.4 Required Initialization


- 945 A constant size grid of floating point numbers is generated on the fly before for each transaction 946 execution. The contents of the grid are randomly generated.
- 947

948 **10.5.5 Configuration Parameters**

949

grid-dimen	Dimension of the input floating point grid for each transaction execution. (NxN)
enable-idc	Enables/disables memory scaling using input data caching (IDC). Must be set
	to false.
iterations	Number of executions per transaction.
debug-level	Value governs the volume of debug messages printed during execution.
input-generate-	Number of random grid assignment iterations.
iterations	

958 10.6 CPU Workload: XmlValidate

959

960 10.6.1 General Description

The XML validate workload implements a transaction that exercises Java's XML validation package
 javax.xml.validation. Using both SAX and DOM APIs, an XML file (.xml) is validated against an XML
 schemata file (.xsd). To randomize input data, an algorithm is applied that swaps the position of
 commented regions within the XML input data.

965

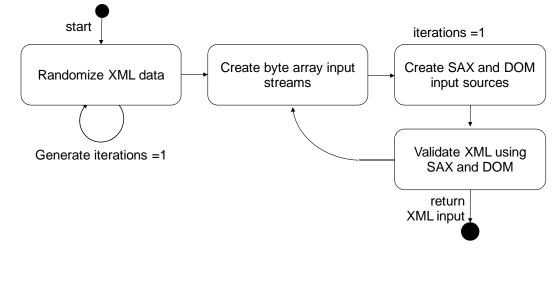
966 10.6.2 Sequence Execution Methods

- 967 Graduated Measurement Sequence
- 968 969 **10.6.3 Metric**
- 970 Transactions Per Second
- 971

972 10.6.4 Required Initialization

A initialization time, both XML and XML schemata files are read in from disk and saved in a buffer for future use. (There will be no further disk IO once this is completed.) A randomization algorithm is

975 applied to the original XML data on the fly before for each transaction execution to create variations in 976 parsing without modifying file size or complexity.


977

978 **10.6.5 Configuration Parameters**

-	
xml-schema-dir	Specifies the directory of the XML schema file.
xml-schema-file	Specifies the name of the XML schema file.
xml-dir	Specifies the directory of the XML file.
xml-file	Specifies the name of the XML file.
enable-idc	Enables/disables memory scaling using input data caching (IDC). Must be set
	to false.
iterations	Number of executions per transaction.
debug-level	Value governs the volume of debug messages printed during execution.
input-generate- iterations	Number of XML file randomization iterations.

979

980 10.6.6 Transaction Code

			ł.
986	10.7	Memory Worklet: Flood	-
987			
988	10.7.1	General Description	
989	The Fl	ood workload is based upon STREAM, a popular benchmark that measures memory bandwidth	
990		four common and important array operations. For the long (64-bit) integer arrays used in	
991	Flood,	the following amounts of memory are involved per assignment:	
992	1.	COPY: $a(i) = b(i)$	
993		8 bytes read + 8 bytes write per assignment = 16 bytes / assignment	
994	2.	SCALE: <i>a</i> (<i>i</i>) = <i>k</i> * <i>b</i> (<i>i</i>)	
995		8 bytes read + 8 bytes write per assignment = 16 bytes / assignment	
996	3.	ADD: $a(i) = b(i) + c(i)$	
997		16 bytes read + 8 bytes write per assignment = 24 bytes / assignment	
998	4.	TRIAD: $a(i) = b(i) + k * c(i)$	
999		16 bytes read + 8 bytes write per assignment = 24 bytes / assignment	
1000	The Fl	ood score is based upon the aggregate system memory bandwidth calculated from the average	1
1001	of thes	se four tests multiplied by the amount of physical memory installed in the SUT. While Flood is	
1002	based	upon STREAM, it uses no STREAM code and is implemented wholly in Java.	
1003	Flood e	enhances STREAM in a variety of important ways.	
1004	1.	Flood rewards systems with large memory configurations by scaling results based upon	
1005		physical memory size.	
	_		

- 1006 2. Flood is designed to fully exploit the memory bandwidth capabilities of modern multi-core 1007 servers. Flood is multithreaded and threads are scheduled to operate concurrently during 1008 bandwidth measurements ensuring maximum throughput and minimizing result variability.
- 1009 3. Flood requires little to no user configuration, yet automatically expands the data set under test to fully utilize available memory. 1010
- Measuring aggregate system memory bandwidth on large servers with many cores and multiple 1011 1012 memory controllers is challenging. In particular, run-to-run variability is often unmanageable with existing memory bandwidth benchmarks. Flood minimizes run-to-run variation by taking three 1013 1014 memory bandwidth tests back-to-back and discarding the first and last tests. This ensures that all 1015 threads are running under fully concurrent conditions during the middle measurement which is 1016 used in Flood scoring calculations.
- 1017
- 1018 Flood scores scales linearly with a SUT's aggregate memory bandwidth as well as with the SUT's 1019 physical memory configuration. CPU, storage and network performance have little to no impact on 1020 Flood scores.
- 1021

1022 Since the Flood workload always deploys a fixed number of iterations and the amount of memory 1023 under test will automatically adjust to fully utilize installed DRAM, run time will vary depending upon 1024 system configuration. On a 2.2GHz, 24-core SUT with 24 threads and 48GB of physical memory, 1025 Flood takes about 20 minutes to complete. Run time varies proportionally with the amount of physical memory installed in the SUT. Run time is also impacted by the overall thread count. 1026

1027

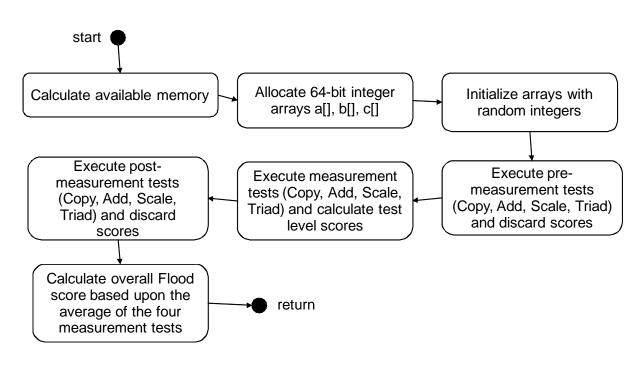
1028 10.7.2 Sequence Execution Methods

- 1029 FixedIterationsDirectorSequence - Flood is executed for a given set of iterations specified within 1030 config.xml.
- 1031
- 1032 10.7.3 Metric
- 1033 Score = aggregate system memory bandwidth (GB/s) * physical memory size (GB)
- 1034

1035 **10.7.4 Required Initialization**1036 Flood calculates the amount of

Flood calculates the amount of memory available to the thread and creates three 64-bit (*long*) integer arrays, a[], b[] and c[], to completely utilize all available space. These arrays are initialized with random data. To ensure full load concurrency during bandwidth measurements, a complete set of pre-measurement tests is launched prior to an identical measurement period followed by identical post-measurement tests. Only the test results for the measurement period are utilized for Flood score generation.

1042


1043 **10.7.5 Configuration Parameters**

memory-under-test	The default value of "-1 MB" turns on automatic configuration of the data set size. However, the user can override this behavior and explicitly define the amount of memory to test per JVM. Valid values are (san quotation marks): "200 MB", "1.1 GB", "10000000 B".
iterations	Flood internally iterates the number of memory bandwidth tests based upon the value of the iterations parameter. The default is 100.
debug-level	Detailed diagnostic information can be enable through the <i>debug</i> parameter. Valid values are $0 = no$ additional debug information (default), $1 = debug$ information turned on, $2 = detailed debug$ information.
return-bandwith	The raw, aggregate system memory bandwidth calculated by Flood can be obtained by setting the parameter return-bandwidth to "true" in which case Flood will return measured memory bandwidth instead of a score. The default value is "false".

1044

1045 10.7.6 Transaction Code

1046

1050 **10.8 Memory Workload: XmlValidate**

1051

1052 **10.8.1 General Description**

The XML validate workload implements a transaction that exercises Java's XML validation package javax.xml.validation. Using both SAX and DOM APIs, an XML file (.xml) is validated against an XML schemata file (.xsd). To randomize input data, an algorithm is applied that swaps the position of commented regions within the XML input data.

1057 Memory scaling in XmlValidate is done through a scheme known as input data caching 1058 (IDC). In IDC, the universe of possible input data (here, randomized XML file data) is pre-1059 computed and then cached within memory before the start of the workload. During workload 1060 execution, the input data for a particular transaction instance is then chosen randomly and 1061 retrieved from this cache rather than computed on the fly.

1063 **10.8.2 Sequence Execution Methods**

- 1064 Graduated Measurement Sequence
- 1065

1062

1066 10.8.3 Metric

- 1067 Transactions Per Second * Cache size * Cache size scaling factor
- 1068

1069 **10.8.4 Required Initialization**

1070 A initialization time, both XML and XML schemata files are read in from disk and saved in a buffer for 1071 future use. (There will be no further disk IO once this is completed.) IDC initialization follows during 1072 which all possible input data sets are pre-computed and cached in memory. For each input data set, a 1073 randomization algorithm is applied to the original XML data to create variations in parsing without 1074 modifying file size or complexity.

1075

1076 **10.8.5 Configuration Parameters**

1077

1078 XmlValidate parameters:

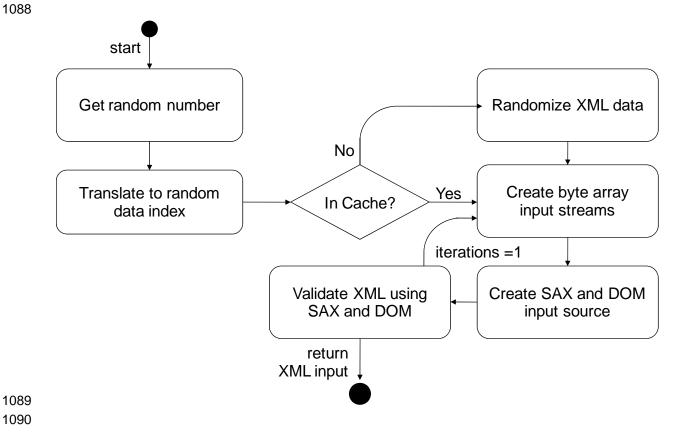
1079

xml-schema-dir	Specifies the directory of the XML schema file.
xml-schema-file	Specifies the name of the XML schema file.
xml-dir	Specifies the directory of the XML file.
xml-file	Specifies the name of the XML file.
enable-idc	Enables/disables memory scaling using input data caching (IDC). Must be set
	to false.
iterations	Number of executions per transaction.
debug-level	Value governs the volume of debug messages printed during execution.
input-generate-	Number of XML file randomization iterations.
iterations	

1080

1082 Additional IDC configuration parameters:

1083


store-type	Specifies the algorithm to use in generating data when a cache miss occurs.
locality-	Specifies the probability distribution to use when randomly choosing input data
distribution	indices.
data-store-size	Specifies the size of the universe of possible input data.
data-cache-size	Specifies the size of the input data cache.
data-cache-	Governs the frequency of output messages on cache hit/miss ratio.
report-interval	
custom-score-	Specifies the algorithm to use in computing custom score reflecting cache size
policy	configuration.
data-cache-	Specifies the scaling factor to use in the DataCacheSizeMultiplierGB custom
size-scale	scoring algorithm.
factor	
data-cache-to-	Ratio of cache size to JVM heap size used in automatic cache sizing.
heap-ratio	

1084

1086

1087

1091	10.9	Storage IO Workload
1092		
1093	10.9.1	General Description
1094	The Sto	orage-Workload has four different transactions, two random and two sequential transaction-
1095	pairs. E	ach pair has a write and a read transaction.
1096		
1097	10.9.2	Sequence Execution Methods
1000	[Cradu	ated Management Converse) or [Fived Iteration Management Converse]

[Graduated Measurement Sequence] or [Fixed Iteration Measurement Sequence] 1098

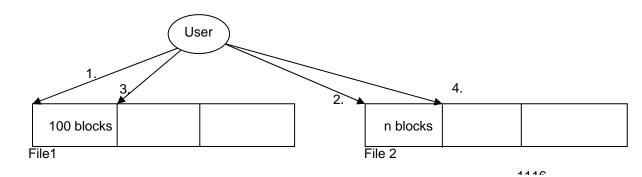
1099 10.9.3 Metric 1100

- Score name and definition of what the score value represent 1101
- 1102

1103 10.9.4 Required Initialization

- 1104 A set of files is created before execution of the transaction
- 1105

1106 10.9.5 Configuration Parameters

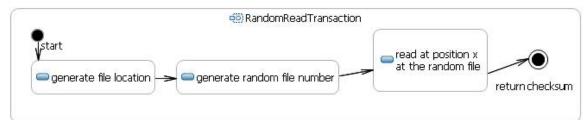

1107

file-size-bytes	size of a file.
file-per-user	number of files opened by each user.
file-path	location of the files - In this example the path is "D:\data\", please note that
	the files always reside in a subfolder called "data".
max-count	amount of blocks that are accessed by the sequential transaction in one file
	before the next file is addressed.

1108

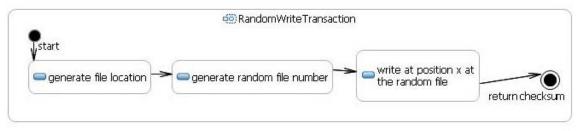
1109 Example:

- 1110 <file-size-bytes>1000000<file-size-bytes>
- 1111 <file-path>D:\</file-path>
- 1112 <file-per-user>2</file-per-user>
- 1113 <max-count>100</max-count>
- 1114

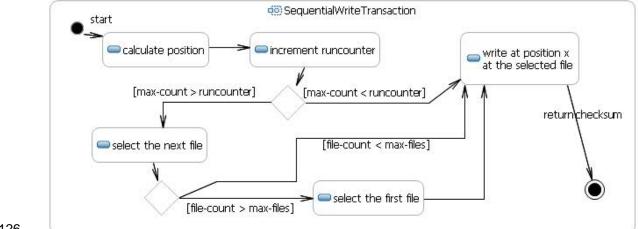


[Figure 7: File Example (2 files per user and max-count of 100)]

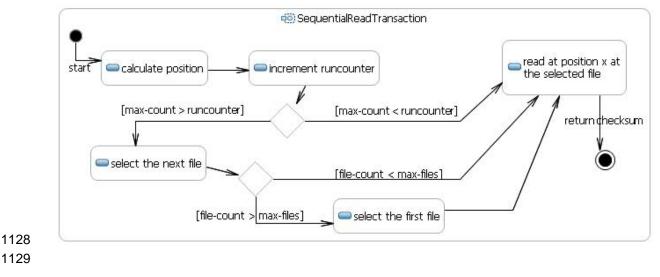
1118


1119 1120

1121 **10.9.6 Transaction – Code 1 - RandomRead**


1122 1123

10.9.7 Transaction – Code 1 - RandomWrite


1124 1125

10.9.8 Transaction – Code 2 – SequentialRead

1126 1127

10.9.9 Transaction – Code 2 – SequentialWrite

1130 **10.10 System Worklet: CSSJ**

1131

1132 **10.10.1 General Description**

1133 CSSJ is an Online Transaction Processing (OLTP) workload, and represents a Server Side Java 1134 application. It is based on the SSJ workload in SPECpower_ssj2008, which was based on 1135 SPECjbb2005, which was inspired by the TPC-C specification; however, there are several differences 1136 between all of these workloads, and CSSJ results are not comparable to any of these other 1137 benchmarks.

1138

1139 The System Worklet exercises the CPU(s), caches, and memory of the UUT. The peak throughput 1140 level is determined by maximum number of transaction of the above type the system can perform per 1141 second. Once the peak value of the transactions is determined on a given system, the worklet is run 1142 from peak (100%) down to the system idle in a graduated manner.

1143 The performance of the System Worklet depends on the combination of the processor type, number of 1144 processors, their operating speed, and the latency and bandwidth of the memory subsystem of the 1145 system.

1146

1147	CSSJ includes 6 transactions, with the approximate frequency shown below:
------	---

- New Order (30.3%) a new order is inserted into the system
- Payment (30.3%) record a customer payment
- Order Status (3.0%) request the status of an existing order
- Delivery (3.0%) process orders for delivery
- Stock Level (3.0%) find recently ordered items with low stock levels
- Customer Report (30.3%) create a report of recent activity for a customer

1154

1155 **10.10.2 Sequence Execution Methods**

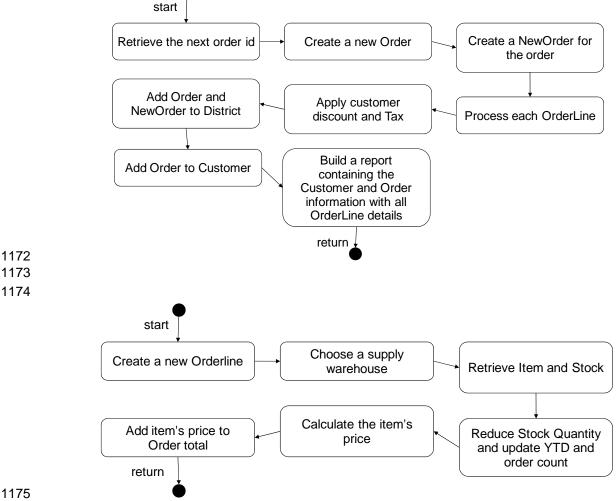
1156 Graduated Measurement Sequence

1157 1158 **10.10.3 Metric**

- 1159 Transactions per second
- 1160

1161 **10.10.4 Required Initialization**

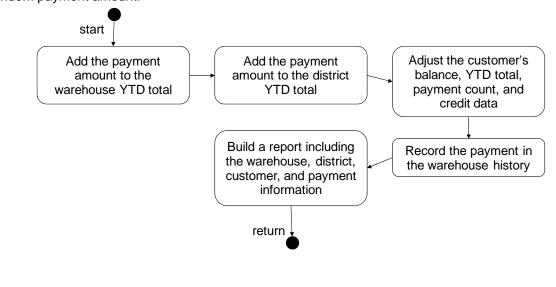
1162 Each user represents a warehouse. During initialization, each warehouse is populated with a base set 1163 of data, including customers, initial orders, and order history.


1164

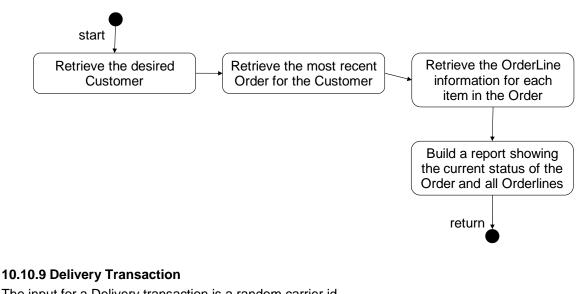
1165 **10.10.5 Configuration Parameters**

- 1166 The CSSJ workload does not have any supported configuration parameters.
- 1167

1168 **10.10.6 New Order Transaction**


- 1169 The input for a New Order Transaction consists of a random district and customer id in the user's
- 1170 warehouse, and a random number of orderlines between 5 and 15.
- 1171

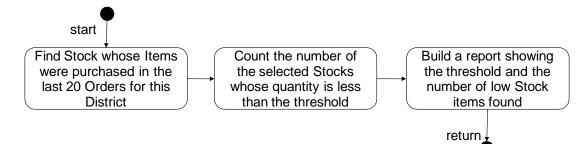
1176


1177 10.10.7 Payment Transaction

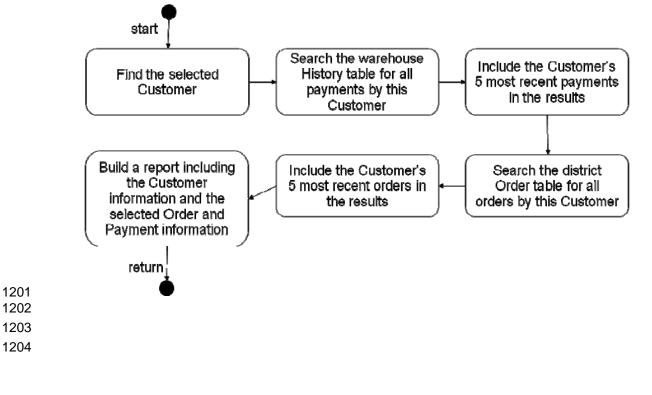
1178 The input for a Payment Transaction consists of a random district from the user's warehouse, a 1179 random customer id or last name (from either the user's warehouse or a remote warehouse) and a 1180 random payment amount.

1183 10.10.8 Order Status Transaction

- 1184 The input for an Order Status Transaction consists of a random district and either a customer id or last
- 1185 name from the user's warehouse.
- 1186


- 1190 The input for a Delivery transaction is a random carrier id.
- 1191

1187 1188 1189


- 1192 [The activity diagram is work in progress]
- 1193

119410.10.10Stock Level Transaction

1195 The input for a Stock level transaction is a random district from the user's warehouse and a random 1196 "low level" threshold between 10 and 20.

- 1197
- 119810.10.11Customer Report Transaction
- 1199 The input for a Customer Report transaction consists of a random district from the user's warehouse 1200 and a random customer id or last name (from either the user's warehouse or a remote warehouse).

